Experimental methods for determination of vapor/sublimation pressures

There is no single experimental technique capable of measuring VP in the whole pressure range of interest
- from fragmets of pascal for many solids and also for many liquids near the triple point temperature
- to hudreds of kilopascals or even several megapascals near the critical temperature

The following sources describe respective techniques in detail:

1. Ambrose, D., Vapor pressure. In Experimental Thermodynamics of Non-reacting Systems, Le Neindre, B.; Vodar, B., Eds. Butterworths: London, 1975; pp 607-656.
                I. Introduction
                II. Static Measurements
                III. The Isoteniscope and Related Methods
                IV. Static Measurements at Elevated Temperatures and Pressures
                V. The Critical Point
                VI. Effect of the Presence of Mercury
                VII. Vapor Pressures of Liquefied Gases
                VIII. Effect of Thermal Transpiration
                IX. Comparative Static Measurements
                X. Static Measurements at Very Low Pressures
                XI. Use of Radioactive Tracers
                XII. Ebulliometric Measurements
                XIII. Ebulliometric Measurements at Pressures below 2 kPa
                XIV. Method of Ramsay and Young
                XV. Dynamic Measurements without a Buffer Gas
                XVI. The Quasi-static Method
                XVII. Measurement of the Force Exerted by the Vapor
                XVIII. Evaporation Methods for Low Pressures
                XIX. Gas-saturation Method
                XX. Differential Thermal Analysis
                XXI. Gas Chromatography
                XXII. Mass Spectrometry
                XXIII. Vapor Pressures of Mixtures

2. Carson, A. S., The measurement of vapor pressure. In Thermochemistry and Its Applications to Chem./Biochem. Systems, Ribeiro da Silva, M. A. V., Ed. D.Riedel Publ. Comp.: 1984; pp 127-41.
               Manometric
               Transpiration
               Ebulliometric
               Vibrating fibre
               Thermistor
               Knudsen effusion

3. Delle Site, A., The vapor pressure of environmentally significant organic chemicals: A review of methods and data at ambient temperature. J. Phys. Chem. Ref. Data 1997, 26, 157-193.
              2. Experimental methods
                  2.1. Direct experimental methods
                        2.1.1. Manometric methods
                        2.1.2. Boiling point at reduced pressures
                        2.1.3. Effusion
                        2.1 .4. Gas saturation
                        2.1.5. Partition coefficient
                        2.1.6. Other methods
                 2.2. Indirect experimental methods
                        2.2.1. Relative volatilization rate
                        2.2.2. Chromatographic methods

4. Verevkin, S. P., Chapter 2. Phase Changes in Pure Component Systems: Liquids and Gases
In Measurement of the Thermodynamic Properties of Multiple Phases, Weir, R. D.; de Loos, T. W., Eds.
Elsevier: Amsterdam, 2005; pp 5-30.

             2.1 Static Measurements
             2.2 Ebulliometry
             2.3 Knudsen Effusion Methods for Vapour Pressure Measurement
                   2.3.1 Conventional Mass-Loss Technique
                   2.3.2 Torsion-Effusion Method
                   2.3.3 Simultaneous Torsion and Mass-Loss Effusion Techniques
                   2.3.4 Isothermal Knudsen Effusion Method in Thermogravimetric-Type Apparatus
                   2.3.5 Non-Isothermal Knudsen Effusion Method in TG-Type Apparatus
                   2.3.6 Mass-Loss Knudsen Technique with a Quartz Crystal Microbalance
                   2.3.7 Mass-Loss Knudsen Technique by Heat-Conducting Calorimetry
                   2.3.8 Mass-Loss Knudsen Technique with a Mass Spectrometry Method
                   2.3.9 Knudsen Cell with Differential Scanning Calorimetry
            2.4 Langmuir Effusion Methods for Vapour Pressure Measurement
            2.5 The Transpiration Method
            2.6 Chromatographic Methods
                  2.6.1 Headspace Analysis
                  2.6.2 GC-Correlations with Retention Times and Vapour Pressures of Reference Compounds
                  2.6.3 GC-Correlations with Net Retention Times
            2.7 Calorimetric Measurements of the Enthalpy of Vaporization
                  2.7.1 Adiabatic Calorimeters
                  2.7.2 Drop Calorimetry Method
                   2.7.3 Differential Calorimetry

5. Verevkin, S. P.; Zaitsau, D. H.; Schick, C.; Heym, F., Chapter 1 Development of Direct and Indirect Methods for the Determination of Vaporization Enthalpies of Extremely Low-Volatile Compounds.
In Handbook of Therm. Anal. and Calorimetry, Vol. 6, Vyazovkin, S.; Koga, N.; Schick, C., Eds.
Elsevier: Amsterdam, 2018; Vol. 6, pp 1-46.

               1.2 KINETIC METHODS OF THERMAL ANALYSIS (VAPORIZATION) OF LOW-VOLATILE COMPOUNDS
               1.3 TEMPERATURE PROGRAMED DESORPTION COMBINED WITH LOSMS
               1.4 THERMOGRAVIMETRIC METHODS FOR THE DETERMINATION OF VAPOR PRESSURES AND THERMAL
                     STABILITY OF HIGH BOILING SUBSTANCES
               1.5 ABSOLUTE VAPOR PRESSURES OF EXTREMELY LOW-VOLATILE COMPOUNDS FROM FSC
               1.6 DIFFERENTIAL SCANNING CALORIMETRY (DSC)
               1.7 STATIC VAPOR PRESSURE MEASUREMENTS
               1.8 CALVET VAPORIZATION DROP MICROCALORIMETRY
               1.9 TRANSPIRATION METHOD
               1.10 UV SPECTROSCOPY FOR VAPORIZATION STUDIES OF LOW-VOLATILE COMPOUNDS
               1.11 CORRELATION GAS CHROMATOGRAPHY
               1.12 HOW TO ADJUST VAPORIZATION ENTHALPY VALUES TO THE REFERENCE TEMPERATURE
                       298.15 K PROPERLY?
                1.13 INDIRECT DETERMINATION OF MOLAR ENTHALPIES OF VAPORIZATION OF ILs FROM CALORIMETRIC
                       RESULTS

6. Zaitsau, D. H.; Paulechka, E., CHAPTER 15 Experimental Determination of Vapor Pressures. In Gibbs Energy and Helmholtz Energy: Liquids, Solutions and Vapours, The Royal Society of Chemistry: 2022; pp 425-448
               1 Static Method
                  1.1 Manometric Setups
                  1.2 Static Technique with Determination of the Gas-phase Concentration
             
2 Boiling Point Techniques
                  2.1 Ebulliometry
                  2.2 Quasi-static Methods
             
3 Dynamic Methods
                  3.1 Transpiration Technique
                  3.2 Thermogravimetric Analysis (TGA)
                  3.3 Fast Scanning Calorimetry (FSC)
             
4 Kinetic Methods

7. Bilde, M.; Barsanti, K.; Booth, M.; Cappa, C. D.; Donahue, N. M.; Emanuelsson, E. U.; McFiggans, G.; Krieger, U. K.; Marcolli, C.; Topping, D.; Ziemann, P.; Barley, M.; Clegg, S.; Dennis-Smither, B.; Hallquist, M.; Hallquist, Å. M.; Khlystov, A.; Kulmala, M.; Mogensen, D.; Percival, C. J.; Pope, F.; Reid, J. P.; Ribeiro da Silva, M. A. V.; Rosenoern, T.; Salo, K.; Soonsin, V. P.; Yli-Juuti, T.; Prisle, N. L.; Pagels, J.; Rarey, J.; Zardini, A. A.; Riipinen, I., Saturation Vapor Pressures and Transition Enthalpies of Low-Volatility Organic Molecules of Atmospheric Relevance: From Dicarboxylic Acids to Complex Mixtures. Chemical Reviews 2015, 115, 4115-4156.
Most methods in this review are not covered by book chapters and reviews above:
             3. Experimental Methods
                3.1. Knudsen-Cell-Based Methods
                      3.1.1. Knudsen Mass Loss Methods
                      3.1.2. Knudsen Effusion Mass Spectrometry
                3.2. Single-Particle Methods
                      3.2.1. Electrodynamic Balance
                      3.2.2. Optical Tweezers
                3.3. Particle Size Distribution Methods
                      3.3.1. Flow Tube Tandem Differential MobilityAnalyzer
                      3.3.2. Volatility Tandem Differential MobilityAnalyzer
                      3.3.3. Integrated Volume Method
                3.4. Thermal Desorption Methods
                      3.4.1. Thermal Desorption Particle Beam Mass Spectrometry
                      3.4.2. Temperature-Programmed Desorption Proton Transfer Chemical Ionization Mass Spectrometry
                      3.4.3. Atmospheric Solids Analysis Probe Mass Spectrometry

Laboratory of Applied Thermodynamics | UCT Prague
Vytvořeno službou Webnode
Vytvořte si webové stránky zdarma! Tento web je vytvořený pomocí Webnode. Vytvořte si vlastní stránky zdarma ještě dnes! Vytvořit stránky