Czech Science Foundation - Reference List

1. Alalwan, H. A.; Alminshid, A. H.; Aljaafari, H. A. S.,
Promising evolution of biofuel generations. Subject review.
Renewable Energy Focus 2019, 28, 127-139. https://doi.org/10.1016/j.ref.2018.12.006

2. Omari, A.; Heuser, B.; Wiartalla, A.; Bergmann, D.,
Stromgenerierte Kraftstoffe für mobile Maschinen.
ATZ offhighway 2018, 11, 42-47. https://doi.org/10.1007/s35746-018-0016-0

3. Green Deal.
https://www.euractiv.com/section/energy-environment/news/eu-commission-unveils-european-green-deal-the-key-points/ (accessed 1.3.2023).

4. Voggenreiter, J.; van de Zande, P.; Burger, J.,
Experiments and a generalized model of the chemical equilibrium of transacetalization and oligomerization of poly(oxymethylene) dialkyl ethers.
Chemical Engineering Science 2022, 262, 117995. https://doi.org/10.1016/j.ces.2022.117995

5. Plötz, P.,
Hydrogen technology is unlikely to play a major role in sustainable road transport.
Nature Electronics 2022, 5, 8-10. https://doi.org/10.1038/s41928-021-00706-6

6. Pasini, G.; Lutzemberger, G.; Ferrari, L.,
Renewable Electricity for Decarbonisation of Road Transport: Batteries or E-Fuels?
Batteries 2023, 9, 135. https://doi.org/doi:10.3390/batteries9020135

7. Breton, T. 
https://ec.europa.eu/commission/presscorner/detail/en/SPEECH_22_7785 (accessed 20-12-2023).

8. Future fuel diversity in heavy duty applications.
https://eminox.com/wp-content/uploads/2021/12/Eminox-Fuel-diversity-whitepaper.pdf (accessed 2022-12-10).

9. SAF Initiative Sustainable Aviation Fuels Guide.
https://www.futureofsustainablefuel.com/wp-content/uploads/2022/06/Fueling-the-Future_SAF-Guide_SAF-Coalition.pdf (accessed 2022-12-12).

10. Wang, Y.; Wright, L. A.,
A Comparative Review of Alternative Fuels for the Maritime Sector: Economic, Technology, and Policy Challenges for Clean Energy Implementation.
World 2021, 2, 456-481. https://doi.org/10.3390/world2040029

11. Biermann, J.   https://www.kopernikus-projekte.de/en/projects/p2x (accessed 2023-03-03).

12. Singh, G.; Sharma, S.; Singh, J.; Kumar, S.; Singh, Y.; Ahmadi, M. H.; Issakhov, A.,
Optimization of performance, combustion and emission characteristics of acetylene aspirated diesel engine with oxygenated fuels: An Experimental approach.
Energy Reports 2021, 7, 1857-1874. https://doi.org/10.1016/j.egyr.2021.03.022

13. García, A.; Gil, A.; Monsalve-Serrano, J.; Lago Sari, R.,
OMEx-diesel blends as high reactivity fuel for ultra-low NOx and soot emissions in the dual-mode dual-fuel combustion strategy.
Fuel 2020, 275, 117898. https://doi.org/10.1016/j.fuel.2020.117898

14. Obergruber, M.; Hönig, V.; Procházka, P.; Kučerová, V.; Kotek, M.; Bouček, J.; Mařík, J.,
Physicochemical Properties of Biobutanol as an Advanced Biofuel.
Materials 2021, 14, 914. https://doi.org/10.3390/ma14040914

15. No, S.-Y.,
Application of Liq. Biofuels to Internal Combustion Engines.
Springer: Singapore, 2020; p 466. https://doi.org/10.1007/978-981-13-6737-3

16. Binhweel, F.; Hossain, M. S.; Ahmad, M. I.,
Recent Trends, Potentials, and Challenges of Biodiesel Production from Discarded Animal Fats: a Comprehensive Review.
BioEnergy Research Available online 22 October 2022, https://doi.org/10.1007/s12155-022-10527-w.

17. Hirani, A. H.; Javed, N.; Asif, M.; Basu, S. K.; Kumar, A.,
A Review on 1st- and 2nd-Generation Biofuel Productions. In Biofuels: Greenhouse Gas Mitigation and Global Warming, Kumar, A.; Ogita, S.; Yau, Y., Eds. Springer: New Delhi, 2018; p 141.

18. Leong, W.-H.; Lim, J.-W.; Lam, M.-K.; Uemura, Y.; Ho, Y.-C.,
Third generation biofuels: A nutritional perspective in enhancing microbial lipid production.
Renewable and Sustainable Energy Reviews 2018, 91, 950-961. https://doi.org/10.1016/j.rser.2018.04.066

19. Mushtaq, Z.; Maqbool, R.; Bhat, K. A.,
Genetic engineering and fifth-generation biofuels.
In Environmental Sustainability of Biofuels, Hakeem, K. R.; Bandh, S. A.; Malla, F. A.; Mehmood, M. A., Eds. Elsevier: 2023; pp 237-251.

20. Stappen, H.-J.; Gräve, P.
eFuels pilot plant in Chile officially opened.
https://newsroom.porsche.com/en/2022/company/porsche-highly-innovative-fuels-hif-opening-efuels-pilot-plant-haru-onichile-synthetic-fuels-30732.html (accessed 2022-03-03).

21. Fritsch, M.; Puls, T.; Schaefer, T.
Synthetic fuels: potential for Europe.
https://www.efuel-alliance.eu/fileadmin/Downloads/2021-02-25_Synthetische_Kraftstoffe_EN_Final_update__IW_.pdf (accessed 2021-09-09).

22. Shah, H. H.; Amin, M.; Iqbal, A.; Nadeem, I.; Kalin, M.; Soomar, A. M.; Galal, A. M.,
A review on gasification and pyrolysis of waste plastics.
Front Chem 2022, 10, 960894. https://doi.org/10.3389/fchem.2022.960894

23. Frantzi, D.; Zabaniotou, A.,
Waste-Based Intermediate Bioenergy Carriers: Syngas Production via Coupling Slow Pyrolysis with Gasification under a Circular Economy Model.
Energies 2021, 14, 7366. https://doi.org/10.3390/en14217366

24. E, J.; Xu, W.; Ma, Y.; Tan, D.; Peng, Q.; Tan, Y.; Chen, L.,
Soot formation mechanism of modern automobile engines and methods of reducing soot emissions: A review.
Fuel Processing Technology 2022, 235. https://doi.org/10.1016/j.fuproc.2022.107373

25. Härtl, M.; Seidenspinner, P.; Jacob, E.; Wachtmeister, G.,
Oxygenate screening on a heavy-duty diesel engine and emission characteristics of highly oxygenated oxymethylene ether fuel OME1.
Fuel 2015, 153, 328-335. https://doi.org/10.1016/j.fuel.2015.03.012

26. Widegren, J. A.; Beall, C. E.; Tolbert, A. E.; Lovestead, T. M.; Bruno, T. J., The Use of Antioxidants to Improve Vapor Pressure Measurements on Compounds with Oxidative Instability: Methyl Oleate with tert-Butylhydroquinone.
Journal of Chemical & Engineering Data 2017, 62, 539-546. https://doi.org/10.1021/acs.jced.6b00821

27. Dinkov, R.; Hristov, G.; Stratiev, D.; Boynova Aldayri, V.,
Effect of commercially available antioxidants over biodiesel/diesel blends stability. Fuel 2009, 88, 732-737. https://doi.org/10.1016/j.fuel.2008.09.017

28. Yamane, K.; Kawasaki, K.; Sone, K.; Hara, T.; Prakoso, T.,
Oxidation stability of biodiesel and its effects on diesel combustion and emission characteristics.
International Journal of Engine Research 2007, 8, 307-319. https://doi.org/10.1243/14680874JER00207

29. Duan, H.; Jia, M.; Li, Y.; Wang, T.,
A comparative study on the performance of partially premixed combustion (PPC), reactivity-controlled compression ignition (RCCI), and RCCI with reverse reactivity stratification (R-RCCI) fueled with gasoline and polyoxymethylene dimethyl ethers (PODEn).
Fuel 2021, 298, 120838. https://doi.org/10.1016/j.fuel.2021.120838

30. No, S.-Y.,
Other Higher Alcohols. In Application of Liquid Biofuels to Internal Combustion Engines,
Springer Singapore: Singapore, 2019; pp 371-404.

31. Minteer, S. D.,
Biochemical production of other bioalcohols.
In HB of Biofuels Production, Luque, R., Ed. Woodhead Publishing: 2011; pp 258-265.

32. Breitkreuz, C. F.; Hevert, N.; Schmitz, N.; Burger, J.; Hasse, H.,
Synthesis of Methylal and Poly(oxymethylene) Dimethyl Ethers from Dimethyl Ether and Trioxane.
Industrial & Engineering Chemistry Research 2022, 61, 7810-7822. https://doi.org/10.1021/acs.iecr.2c00790

33. Peter, A.; Fehr, S. M.; Dybbert, V.; Himmel, D.; Lindner, I.; Jacob, E.; Ouda, M.; Schaadt, A.; White, R. J.; Scherer, H.; Krossing, I.,
Towards a Sustainable Synthesis of Oxymethylene Dimethyl Ether by Homogeneous Catalysis and Uptake of Molecular Formaldehyde.
Angewandte Chemie International Edition 2018, 57, 9461-9464. https://doi.org/10.1002/anie.201802247

34. Iannuzzi, S. E.; Barro, C.; Boulouchos, K.; Burger, J.,
POMDME-diesel blends: Evaluation of performance and exhaust emissions in a single cylinder heavy-duty diesel engine.
Fuel 2017, 203, 57-67. https://doi.org/10.1016/j.fuel.2017.04.089

35. Omari, A.; Heuser, B.; Pischinger, S.; Rüdinger, C.,
Potential of long-chain oxymethylene ether and oxymethylene ether-diesel blends for ultra-low emission engines. Applied Energy 2019, 239, 1242-1249. https://doi.org/10.1016/j.apenergy.2019.02.035

36. Cherry, N.; Moore, H.; McNamee, R.; Pacey, A.; Burgess, G.; Clyma, J. A.; Dippnall, M.; Baillie, H.; Povey, A.,
Occupation and male infertility: glycol ethers and other exposures.
Occupational and Environmental Medicine 2008, 65, 708. https://doi.org/10.1136/oem.2007.035824

37. Tang, S.; Zhao, H.,
Glymes as versatile solvents for chemical reactions and processes: from the laboratory to industry.
RSC Advances 2014, 4, 11251-11287.10.1039/C3RA47191H

38. Franz, A. W.; Kronemayer, H.; Pfeiffer, D.; Pilz, R. D.; Reuss, G.; Disteldorf, W.; Gamer, A. O.; Hilt, A.,
Formaldehyde. In Ullmann's Encyclopedia of Industrial Chemistry, 2016; pp 1-34.

39. Gao, X.-J.; Wang, W.-F.; Gu, Y.-Y.; Zhang, Z.-Z.; Zhang, J.-F.; Zhang, Q.-D.; Tsubaki, N.; Han, Y.-Z.; Tan, Y.-S.,
Synthesis of Polyoxymethylene Dimethyl Ethers from Dimethyl Ether Direct Oxidation over Carbon-Based Catalysts. ChemCatChem 2018, 10, 273-279.  https://doi.org/10.1002/cctc.201701213

40. Haltenort, P.; Lautenschütz, L.; Arnold, U.; Sauer, J.,
(Trans)acetalization Reactions for the Synthesis of Oligomeric Oxymethylene Dialkyl Ethers Catalyzed by Zeolite BEA25. Topics in Catalysis 2019, 62, 551-559. https://doi.org/10.1007/s11244-019-01188-9

41. Degnan, T. F.,
Applications of zeolites in petroleum refining.
Topics in Catalysis 2000, 13, 349-356. https://doi.org/10.1023/A:1009054905137

42. Kurre, S. K.; Yadav, J.,
A review on bio-based feedstock, synthesis, and chemical modification to enhance tribological properties of biolubricants.
Industrial Crops and Products 2023, 193, 116122. https://doi.org/10.1016/j.indcrop.2022.116122

43. Khodakov, A. Y.; Chu, W.; Fongarland, P.,
Advances in the Development of Novel Cobalt Fischer−Tropsch Catalysts for Synthesis of Long-Chain Hydrocarbons and Clean Fuels.
Chemical Reviews 2007, 107, 1692-1744. https://doi.org/10.1021/cr050972v

44. de Oliveira, D. C.; Lora, E. E. S.; Venturini, O. J.; Maya, D. M. Y.; Garcia-Pérez, M.,
Gas cleaning systems for integrating biomass gasification with Fischer-Tropsch synthesis - A review of impurity removal processes and their sequences.
Renewable and Sustainable Energy Reviews 2023, 172, 113047. https://doi.org/10.1016/j.rser.2022.113047

45. Månsson, M.,
Non-bonded oxygen-oxygen interactions in straight-chain compounds.
The Journal of Chemical Thermodynamics 1969, 1, 141-151. https://doi.org/10.1016/0021-9614(69)90053-6

46. Pokorný, V.; Štejfa, V.; Pavlíček, J.; Klajmon, M.; Fulem, M.; Růžička, K.,
Vapor Pressures and Thermophysical Properties of Dimethoxymethane, 1,2-Dimethoxyethane, 2-Methoxyethanol, and 2-Ethoxyethanol: Data Reconciliation and Perturbed-Chain Statistical Associating Fluid Theory Modeling.
Journal of Chemical and Engineering Data 2021, 66, 2640-2654. https://doi.org/10.1021/acs.jced.1c00229

47. Lautenschütz, L.; Oestreich, D.; Seidenspinner, P.; Arnold, U.; Dinjus, E.; Sauer, J.,
Physico-chemical properties and fuel characteristics of oxymethylene dialkyl ethers.
Fuel 2016, 173, 129-137.https://doi.org/10.1016/j.fuel.2016.01.060

48. Klamt, A.,
Conductor-like Screening Model for Real Solvents: A New Approach to the Quantitative Calculation of Solvation Phenomena.
The Journal of Physical Chemistry 1995, 99, 2224-2235.10.1021/j100007a062

49. Vávra, J.; Bortel, I.; Takáts, M.; Diviš, M.,
Emissions and performance of diesel–natural gas dual-fuel engine operated with stoichiometric mixture.
Fuel 2017, 208, 722-733. https://doi.org/10.1016/j.fuel.2017.07.057

50. Pokorný, V.; Štejfa, V.; Klajmon, M.; Fulem, M.; Růžička, K.,
Vapor Pressures and Thermophysical Properties of 1-Heptanol, 1-Octanol, 1-Nonanol, and 1-Decanol: Data Reconciliation and PC-SAFT Modeling.
Journal of Chemical and Engineering Data 2021, 66, 805-821. https://doi.org/10.1021/acs.jced.0c00878

51. Sanchez-Lemus, M. C.; Schoeggl, F.; Taylor, S. D.; Mahnel, T.; Vrbka, P.; Růžčka, K.; Fulem, M.; Yarranton, H. W.,
Vapor pressure and thermal properties of heavy oil distillation cuts.
Fuel 2016, 181, 503-521. https://doi.org/10.1016/j.fuel.2016.04.143

52. Růžička, K.; Mokbel, I.; Majer, V.; Růžička, V.; Jose, J.; Zábranský, M.,
Description of vapor-liquid and vapor-solid equilibria for a group of polycondensed compounds of petroleum interest. Fluid Phase Equilibria 1998, 148, 107-137. https://doi.org/10.1016/S0378-3812(98)00200-3

53. Mahnel, T.; Štejfa, V.; Maryška, M.; Fulem, M.; Růžička, K.,
Reconciled thermophysical data for anthracene.
The Journal of Chemical Thermodynamics 2019, 129, 61-72. https://doi.org/10.1016/j.jct.2018.08.034

54. Růžička, K.; Fulem, M.; Růžička, V.,
Recommended Vapor Pressure of Solid Naphthalene.
Journal of Chemical and Engineering Data 2005, 50, 1956-1970. https://doi.org/10.1021/je050216m

55. Hong, K.-I.; Kim, H.; Kim, Y.; Choi, M.-G.; Jang, W.-D.,
Strapped calix[4]pyrrole as a lithium salts selective receptor through separated ion-pair binding.
Chemical Communications 2020, 56,  https://doi.org/10541-10544.10.1039/D0CC04809G

56. Štejfa, V.; Fulem, M.; Růžička, K.,
First-principles calculation of ideal-gas thermodynamic properties of long-chain molecules by R1SM approach—Application to n-alkanes.
The Journal of Chemical Physics 2019, 150. https://doi.org/10.1063/1.5093767

57. Stahn, M.; Grimme, S.; Salthammer, T.; Hohm, U.; Palm, W.-U.,
Quantum chemical calculation of the vapor pressure of volatile and semi volatile organic compounds.
Environmental Science: Processes & Impacts 2022, 24, 2153-2166. https://doi.org/10.1039/D2EM00271J

58. Štejfa, V.; Fulem, M.; Růžička, K.; Morávek, P.,
New Static Apparatus for Vapor Pressure Measurements: Reconciled Thermophysical Data for Benzophenone.
Journal of Chemical and Engineering Data 2016, 61, 3627−3639. https://doi.org/10.1021/acs.jced.6b00523

59. Vrbka, P.; Dohnal, V.,
Limiting activity coefficient measurements in binary mixtures of dichloromethane and 1-alkanols (C1–C4).
Fluid Phase Equilibria 2016, 411, 59-65. https://doi.org/10.1016/j.fluid.2015.11.037

60. Koutek, B.; Pokorný, V.; Mahnel, T.; Štejfa, V.; Řehák, K.; Fulem, M.; Růžička, K.,
Estimating Vapor Pressure Data from Gas–Liquid Chromatography Retention Times: Analysis of Multiple Reference Approaches, Review of Prior Applications, and Outlook.
Journal of Chemical and Engineering Data 2022, 67, 2017-2043. https://doi.org/10.1021/acs.jced.2c00236

61. Klajmon, M.; Řehák, K.; Morávek, P.; Matoušová, M.,
Binary Liquid–Liquid Equilibria of γ-Valerolactone with Some Hydrocarbons.
Journal of Chemical & Engineering Data 2015, 60, 1362-1370. https://doi.org/10.1021/je501074b

62. Klamt, A.; Eckert, F.; Hornig, M.; Beck, M. E.; Burger, T.,
Prediction of aqueous solubility of drugs and pesticides with COSMO-RS.
J Comput Chem 2002, 23, 275-81. https://doi.org/10.1002/jcc.1168

63. Klajmon, M., Purely Predicting the Pharmaceutical Solubility: What to Expect from PC-SAFT and COSMO-RS?
Mol Pharm 2022, 19, 4212-4232. https://doi.org/10.1021/acs.molpharmaceut.2c00573

64. Mambo-Lomba, D.; Paricaud, P., Predictions of thermodynamic properties and phase equilibria of refrigerant systems with COSMO approaches. 
International Journal of Refrigeration 2021, 124, 52-63. https://doi.org/10.1016/j.ijrefrig.2020.11.005

65. Freire, M. G.; Ventura, S. P. M.; Santos, L. M. N. B. F.; Marrucho, I. M.; Coutinho, J. A. P.,
Evaluation of COSMO-RS for the prediction of LLE and VLE of water and ionic liquids binary systems.
Fluid Phase Equilibria 2008, 268, 74-84. https://doi.org/10.1016/j.fluid.2008.04.009

66. Mahnel, T.; Pokorný, V.; Fulem, M.; Sedmidubský, D.; Růžička, K.,
Measurement of low-temperature heat capacity by relaxation technique: Calorimeter performance testing and heat capacity of benzo[b]fluoranthene, benzo[k]fluoranthene, and indeno[1,2,3-cd]pyrene.
The Journal of Chemical Thermodynamics 2020, 142, 105964. https://doi.org/10.1016/j.jct.2019.105964

67. LAT_UCTP: VP Ref. Compounds. https://atductp.cms.webnode.cz/vp-for-ref-compounds/.

.

Laboratory of Applied Thermodynamics | UCT Prague
Vytvořeno službou Webnode
Vytvořte si webové stránky zdarma! Tento web je vytvořený pomocí Webnode. Vytvořte si vlastní stránky zdarma ještě dnes! Vytvořit stránky