Czech Science Foundation - Reference List
1. Alalwan, H. A.; Alminshid, A. H.; Aljaafari,
H. A. S.,
Promising evolution of biofuel generations. Subject review.
Renewable Energy Focus 2019, 28, 127-139. https://doi.org/10.1016/j.ref.2018.12.006
2. Omari,
A.; Heuser, B.; Wiartalla, A.; Bergmann, D.,
Stromgenerierte Kraftstoffe für
mobile Maschinen.
ATZ offhighway 2018, 11, 42-47. https://doi.org/10.1007/s35746-018-0016-0
3. Green
Deal.
https://www.euractiv.com/section/energy-environment/news/eu-commission-unveils-european-green-deal-the-key-points/
(accessed 1.3.2023).
4. Voggenreiter,
J.; van de Zande, P.; Burger, J.,
Experiments and a generalized model of the
chemical equilibrium of transacetalization and oligomerization of
poly(oxymethylene) dialkyl ethers.
Chemical
Engineering Science 2022, 262, 117995. https://doi.org/10.1016/j.ces.2022.117995
5. Plötz,
P.,
Hydrogen technology is unlikely to play a major role in sustainable road
transport.
Nature Electronics 2022, 5, 8-10. https://doi.org/10.1038/s41928-021-00706-6
6. Pasini,
G.; Lutzemberger, G.; Ferrari, L.,
Renewable Electricity for Decarbonisation of
Road Transport: Batteries or E-Fuels?
Batteries
2023, 9, 135. https://doi.org/doi:10.3390/batteries9020135
7. Breton,
T.
https://ec.europa.eu/commission/presscorner/detail/en/SPEECH_22_7785
(accessed 20-12-2023).
8. Future
fuel diversity in heavy duty applications.
https://eminox.com/wp-content/uploads/2021/12/Eminox-Fuel-diversity-whitepaper.pdf
(accessed 2022-12-10).
9. SAF Initiative
Sustainable Aviation Fuels Guide.
https://www.futureofsustainablefuel.com/wp-content/uploads/2022/06/Fueling-the-Future_SAF-Guide_SAF-Coalition.pdf
(accessed 2022-12-12).
10. Wang,
Y.; Wright, L. A.,
A Comparative Review of Alternative Fuels for the Maritime
Sector: Economic, Technology, and Policy Challenges for Clean Energy
Implementation.
World 2021, 2, 456-481. https://doi.org/10.3390/world2040029
11. Biermann, J. https://www.kopernikus-projekte.de/en/projects/p2x (accessed 2023-03-03).
12. Singh,
G.; Sharma, S.; Singh, J.; Kumar, S.; Singh, Y.; Ahmadi, M. H.; Issakhov, A.,
Optimization of performance, combustion and emission characteristics of
acetylene aspirated diesel engine with oxygenated fuels: An Experimental
approach.
Energy Reports 2021, 7, 1857-1874. https://doi.org/10.1016/j.egyr.2021.03.022
13. García,
A.; Gil, A.; Monsalve-Serrano, J.; Lago Sari, R.,
OMEx-diesel blends as high
reactivity fuel for ultra-low NOx and soot emissions in the dual-mode dual-fuel
combustion strategy.
Fuel 2020, 275, 117898. https://doi.org/10.1016/j.fuel.2020.117898
14. Obergruber,
M.; Hönig, V.; Procházka, P.; Kučerová, V.; Kotek, M.; Bouček, J.; Mařík, J.,
Physicochemical Properties of Biobutanol as an Advanced Biofuel.
Materials 2021, 14, 914. https://doi.org/10.3390/ma14040914
15. No,
S.-Y.,
Application of Liq. Biofuels to
Internal Combustion Engines.
Springer: Singapore, 2020; p 466. https://doi.org/10.1007/978-981-13-6737-3
16. Binhweel,
F.; Hossain, M. S.; Ahmad, M. I.,
Recent Trends, Potentials, and Challenges of
Biodiesel Production from Discarded Animal Fats: a Comprehensive Review.
BioEnergy Research Available online 22 October 2022, https://doi.org/10.1007/s12155-022-10527-w.
17. Hirani,
A. H.; Javed, N.; Asif, M.; Basu, S. K.; Kumar, A.,
A Review on 1st- and
2nd-Generation Biofuel Productions. In Biofuels:
Greenhouse Gas Mitigation and Global Warming, Kumar, A.; Ogita, S.; Yau,
Y., Eds. Springer: New Delhi, 2018; p 141.
18. Leong,
W.-H.; Lim, J.-W.; Lam, M.-K.; Uemura, Y.; Ho, Y.-C.,
Third generation
biofuels: A nutritional perspective in enhancing microbial lipid production.
Renewable and Sustainable Energy Reviews 2018, 91, 950-961. https://doi.org/10.1016/j.rser.2018.04.066
19. Mushtaq,
Z.; Maqbool, R.; Bhat, K. A.,
Genetic engineering and fifth-generation
biofuels.
In Environmental Sustainability
of Biofuels, Hakeem, K. R.; Bandh, S. A.; Malla, F. A.; Mehmood, M. A.,
Eds. Elsevier: 2023; pp 237-251.
20. Stappen,
H.-J.; Gräve, P.
eFuels pilot plant in Chile officially opened.
https://newsroom.porsche.com/en/2022/company/porsche-highly-innovative-fuels-hif-opening-efuels-pilot-plant-haru-onichile-synthetic-fuels-30732.html
(accessed 2022-03-03).
21. Fritsch,
M.; Puls, T.; Schaefer, T.
Synthetic fuels: potential for Europe.
https://www.efuel-alliance.eu/fileadmin/Downloads/2021-02-25_Synthetische_Kraftstoffe_EN_Final_update__IW_.pdf
(accessed 2021-09-09).
22. Shah,
H. H.; Amin, M.; Iqbal, A.; Nadeem, I.; Kalin, M.; Soomar, A. M.; Galal, A. M.,
A review on gasification and pyrolysis of waste plastics.
Front Chem 2022, 10, 960894. https://doi.org/10.3389/fchem.2022.960894
23. Frantzi,
D.; Zabaniotou, A.,
Waste-Based Intermediate Bioenergy Carriers: Syngas
Production via Coupling Slow Pyrolysis with Gasification under a Circular
Economy Model.
Energies 2021, 14, 7366. https://doi.org/10.3390/en14217366
24. E,
J.; Xu, W.; Ma, Y.; Tan, D.; Peng, Q.; Tan, Y.; Chen, L.,
Soot formation
mechanism of modern automobile engines and methods of reducing soot emissions:
A review.
Fuel Processing Technology 2022, 235. https://doi.org/10.1016/j.fuproc.2022.107373
25. Härtl,
M.; Seidenspinner, P.; Jacob, E.; Wachtmeister, G.,
Oxygenate screening on a
heavy-duty diesel engine and emission characteristics of highly oxygenated
oxymethylene ether fuel OME1.
Fuel 2015, 153, 328-335. https://doi.org/10.1016/j.fuel.2015.03.012
26. Widegren,
J. A.; Beall, C. E.; Tolbert, A. E.; Lovestead, T. M.; Bruno, T. J., The Use of
Antioxidants to Improve Vapor Pressure Measurements on Compounds with Oxidative
Instability: Methyl Oleate with tert-Butylhydroquinone.
Journal of Chemical & Engineering Data 2017, 62, 539-546. https://doi.org/10.1021/acs.jced.6b00821
27. Dinkov,
R.; Hristov, G.; Stratiev, D.; Boynova Aldayri, V.,
Effect of commercially
available antioxidants over biodiesel/diesel blends stability. Fuel 2009, 88, 732-737. https://doi.org/10.1016/j.fuel.2008.09.017
28. Yamane,
K.; Kawasaki, K.; Sone, K.; Hara, T.; Prakoso, T.,
Oxidation stability of
biodiesel and its effects on diesel combustion and emission characteristics.
International Journal of Engine Research 2007, 8, 307-319. https://doi.org/10.1243/14680874JER00207
29. Duan,
H.; Jia, M.; Li, Y.; Wang, T.,
A comparative study on the performance of
partially premixed combustion (PPC), reactivity-controlled compression ignition
(RCCI), and RCCI with reverse reactivity stratification (R-RCCI) fueled with
gasoline and polyoxymethylene dimethyl ethers (PODEn).
Fuel 2021, 298, 120838. https://doi.org/10.1016/j.fuel.2021.120838
30. No,
S.-Y.,
Other Higher Alcohols. In Application
of Liquid Biofuels to Internal Combustion Engines,
Springer Singapore:
Singapore, 2019; pp 371-404.
31. Minteer,
S. D.,
Biochemical production of other bioalcohols.
In HB of Biofuels Production, Luque, R., Ed. Woodhead Publishing:
2011; pp 258-265.
32. Breitkreuz,
C. F.; Hevert, N.; Schmitz, N.; Burger, J.; Hasse, H.,
Synthesis of Methylal
and Poly(oxymethylene) Dimethyl Ethers from Dimethyl Ether and Trioxane.
Industrial & Engineering Chemistry
Research 2022, 61, 7810-7822. https://doi.org/10.1021/acs.iecr.2c00790
33. Peter,
A.; Fehr, S. M.; Dybbert, V.; Himmel, D.; Lindner, I.; Jacob, E.; Ouda, M.;
Schaadt, A.; White, R. J.; Scherer, H.; Krossing, I.,
Towards a Sustainable
Synthesis of Oxymethylene Dimethyl Ether by Homogeneous Catalysis and Uptake of
Molecular Formaldehyde.
Angewandte Chemie
International Edition 2018, 57, 9461-9464. https://doi.org/10.1002/anie.201802247
34. Iannuzzi,
S. E.; Barro, C.; Boulouchos, K.; Burger, J.,
POMDME-diesel blends: Evaluation
of performance and exhaust emissions in a single cylinder heavy-duty diesel
engine.
Fuel 2017, 203, 57-67. https://doi.org/10.1016/j.fuel.2017.04.089
35. Omari,
A.; Heuser, B.; Pischinger, S.; Rüdinger, C.,
Potential of long-chain
oxymethylene ether and oxymethylene ether-diesel blends for ultra-low emission
engines. Applied Energy 2019, 239, 1242-1249. https://doi.org/10.1016/j.apenergy.2019.02.035
36. Cherry,
N.; Moore, H.; McNamee, R.; Pacey, A.; Burgess, G.; Clyma, J. A.; Dippnall, M.;
Baillie, H.; Povey, A.,
Occupation and male infertility: glycol ethers and
other exposures.
Occupational and
Environmental Medicine 2008, 65, 708. https://doi.org/10.1136/oem.2007.035824
37. Tang,
S.; Zhao, H.,
Glymes as versatile solvents for chemical reactions and
processes: from the laboratory to industry.
RSC
Advances 2014, 4, 11251-11287.10.1039/C3RA47191H
38. Franz,
A. W.; Kronemayer, H.; Pfeiffer, D.; Pilz, R. D.; Reuss, G.; Disteldorf, W.; Gamer,
A. O.; Hilt, A.,
Formaldehyde. In Ullmann's
Encyclopedia of Industrial Chemistry, 2016; pp 1-34.
39. Gao,
X.-J.; Wang, W.-F.; Gu, Y.-Y.; Zhang, Z.-Z.; Zhang, J.-F.; Zhang, Q.-D.;
Tsubaki, N.; Han, Y.-Z.; Tan, Y.-S.,
Synthesis of Polyoxymethylene Dimethyl
Ethers from Dimethyl Ether Direct Oxidation over Carbon-Based Catalysts. ChemCatChem 2018, 10, 273-279. https://doi.org/10.1002/cctc.201701213
40. Haltenort,
P.; Lautenschütz, L.; Arnold, U.; Sauer, J.,
(Trans)acetalization Reactions for
the Synthesis of Oligomeric Oxymethylene Dialkyl Ethers Catalyzed by Zeolite
BEA25. Topics in Catalysis 2019, 62, 551-559. https://doi.org/10.1007/s11244-019-01188-9
41. Degnan,
T. F.,
Applications of zeolites in petroleum refining.
Topics in Catalysis 2000,
13, 349-356. https://doi.org/10.1023/A:1009054905137
42. Kurre,
S. K.; Yadav, J.,
A review on bio-based feedstock, synthesis, and chemical
modification to enhance tribological properties of biolubricants.
Industrial Crops and Products 2023, 193, 116122. https://doi.org/10.1016/j.indcrop.2022.116122
43. Khodakov,
A. Y.; Chu, W.; Fongarland, P.,
Advances in the Development of Novel Cobalt
Fischer−Tropsch Catalysts for Synthesis of Long-Chain Hydrocarbons and Clean
Fuels.
Chemical Reviews 2007, 107, 1692-1744. https://doi.org/10.1021/cr050972v
44. de
Oliveira, D. C.; Lora, E. E. S.; Venturini, O. J.; Maya, D. M. Y.;
Garcia-Pérez, M.,
Gas cleaning systems for integrating biomass gasification
with Fischer-Tropsch synthesis - A review of impurity removal processes and
their sequences.
Renewable and
Sustainable Energy Reviews 2023,
172, 113047. https://doi.org/10.1016/j.rser.2022.113047
45. Månsson,
M.,
Non-bonded oxygen-oxygen interactions in straight-chain compounds.
The Journal of Chemical Thermodynamics 1969, 1, 141-151. https://doi.org/10.1016/0021-9614(69)90053-6
46. Pokorný,
V.; Štejfa, V.; Pavlíček, J.; Klajmon, M.; Fulem, M.; Růžička, K.,
Vapor
Pressures and Thermophysical Properties of Dimethoxymethane,
1,2-Dimethoxyethane, 2-Methoxyethanol, and 2-Ethoxyethanol: Data Reconciliation
and Perturbed-Chain Statistical Associating Fluid Theory Modeling.
Journal of Chemical and Engineering Data 2021, 66, 2640-2654. https://doi.org/10.1021/acs.jced.1c00229
47. Lautenschütz,
L.; Oestreich, D.; Seidenspinner, P.; Arnold, U.; Dinjus, E.; Sauer, J.,
Physico-chemical properties and fuel characteristics of oxymethylene dialkyl
ethers.
Fuel 2016, 173, 129-137.https://doi.org/10.1016/j.fuel.2016.01.060
48. Klamt,
A.,
Conductor-like Screening Model for Real Solvents: A New Approach to the
Quantitative Calculation of Solvation Phenomena.
The Journal of Physical Chemistry 1995, 99,
2224-2235.10.1021/j100007a062
49. Vávra,
J.; Bortel, I.; Takáts, M.; Diviš, M.,
Emissions and performance of
diesel–natural gas dual-fuel engine operated with stoichiometric mixture.
Fuel 2017, 208, 722-733. https://doi.org/10.1016/j.fuel.2017.07.057
50. Pokorný,
V.; Štejfa, V.; Klajmon, M.; Fulem, M.; Růžička, K.,
Vapor Pressures and
Thermophysical Properties of 1-Heptanol, 1-Octanol, 1-Nonanol, and 1-Decanol:
Data Reconciliation and PC-SAFT Modeling.
Journal
of Chemical and Engineering Data 2021,
66, 805-821. https://doi.org/10.1021/acs.jced.0c00878
51. Sanchez-Lemus,
M. C.; Schoeggl, F.; Taylor, S. D.; Mahnel, T.; Vrbka, P.; Růžčka, K.; Fulem,
M.; Yarranton, H. W.,
Vapor pressure and thermal properties of heavy oil
distillation cuts.
Fuel 2016, 181, 503-521. https://doi.org/10.1016/j.fuel.2016.04.143
52. Růžička,
K.; Mokbel, I.; Majer, V.; Růžička, V.; Jose, J.; Zábranský, M.,
Description of
vapor-liquid and vapor-solid equilibria for a group of polycondensed compounds
of petroleum interest. Fluid Phase
Equilibria 1998, 148, 107-137. https://doi.org/10.1016/S0378-3812(98)00200-3
53. Mahnel,
T.; Štejfa, V.; Maryška, M.; Fulem, M.; Růžička, K.,
Reconciled thermophysical
data for anthracene.
The Journal of
Chemical Thermodynamics 2019, 129, 61-72. https://doi.org/10.1016/j.jct.2018.08.034
54. Růžička,
K.; Fulem, M.; Růžička, V.,
Recommended Vapor Pressure of Solid Naphthalene.
Journal of Chemical and Engineering Data 2005, 50, 1956-1970. https://doi.org/10.1021/je050216m
55. Hong,
K.-I.; Kim, H.; Kim, Y.; Choi, M.-G.; Jang, W.-D.,
Strapped calix[4]pyrrole as
a lithium salts selective receptor through separated ion-pair binding.
Chemical Communications 2020, 56, https://doi.org/10541-10544.10.1039/D0CC04809G
56. Štejfa,
V.; Fulem, M.; Růžička, K.,
First-principles calculation of ideal-gas
thermodynamic properties of long-chain molecules by R1SM approach—Application
to n-alkanes.
The Journal of Chemical
Physics 2019, 150. https://doi.org/10.1063/1.5093767
57. Stahn,
M.; Grimme, S.; Salthammer, T.; Hohm, U.; Palm, W.-U.,
Quantum chemical
calculation of the vapor pressure of volatile and semi volatile organic
compounds.
Environmental Science:
Processes & Impacts 2022, 24, 2153-2166. https://doi.org/10.1039/D2EM00271J
58. Štejfa,
V.; Fulem, M.; Růžička, K.; Morávek, P.,
New Static Apparatus for Vapor
Pressure Measurements: Reconciled Thermophysical Data for Benzophenone.
Journal of Chemical and Engineering Data 2016, 61, 3627−3639. https://doi.org/10.1021/acs.jced.6b00523
59. Vrbka,
P.; Dohnal, V.,
Limiting activity coefficient measurements in binary mixtures
of dichloromethane and 1-alkanols (C1–C4).
Fluid
Phase Equilibria 2016, 411, 59-65. https://doi.org/10.1016/j.fluid.2015.11.037
60. Koutek,
B.; Pokorný, V.; Mahnel, T.; Štejfa, V.; Řehák, K.; Fulem, M.; Růžička, K.,
Estimating Vapor Pressure Data from Gas–Liquid Chromatography Retention Times:
Analysis of Multiple Reference Approaches, Review of Prior Applications, and
Outlook.
Journal of Chemical and
Engineering Data 2022, 67, 2017-2043. https://doi.org/10.1021/acs.jced.2c00236
61. Klajmon,
M.; Řehák, K.; Morávek, P.; Matoušová, M.,
Binary Liquid–Liquid Equilibria of
γ-Valerolactone with Some Hydrocarbons.
Journal
of Chemical & Engineering Data 2015,
60, 1362-1370. https://doi.org/10.1021/je501074b
62. Klamt,
A.; Eckert, F.; Hornig, M.; Beck, M. E.; Burger, T.,
Prediction of aqueous
solubility of drugs and pesticides with COSMO-RS.
J Comput Chem 2002, 23, 275-81. https://doi.org/10.1002/jcc.1168
63. Klajmon,
M., Purely Predicting the Pharmaceutical Solubility: What to Expect from
PC-SAFT and COSMO-RS?
Mol Pharm 2022, 19, 4212-4232. https://doi.org/10.1021/acs.molpharmaceut.2c00573
64. Mambo-Lomba,
D.; Paricaud, P., Predictions of thermodynamic properties and phase equilibria
of refrigerant systems with COSMO approaches.
International Journal of Refrigeration 2021, 124, 52-63. https://doi.org/10.1016/j.ijrefrig.2020.11.005
65. Freire,
M. G.; Ventura, S. P. M.; Santos, L. M. N. B. F.; Marrucho, I. M.; Coutinho, J.
A. P.,
Evaluation of COSMO-RS for the prediction of LLE and VLE of water and
ionic liquids binary systems.
Fluid Phase
Equilibria 2008, 268, 74-84. https://doi.org/10.1016/j.fluid.2008.04.009
66. Mahnel,
T.; Pokorný, V.; Fulem, M.; Sedmidubský, D.; Růžička, K.,
Measurement of
low-temperature heat capacity by relaxation technique: Calorimeter performance
testing and heat capacity of benzo[b]fluoranthene, benzo[k]fluoranthene, and
indeno[1,2,3-cd]pyrene.
The Journal of
Chemical Thermodynamics 2020, 142, 105964. https://doi.org/10.1016/j.jct.2019.105964
67. LAT_UCTP: VP Ref. Compounds. https://atductp.cms.webnode.cz/vp-for-ref-compounds/.
.